Eastern Journal of Agricultural and Biological Science (EJABS)

ISSN: 2753-3247

https://qabasjournals.com/index.php/ejabs

Effect of some Chemical Herbicides on growth and yield characteristics for two bread wheat cultivars *Triticum aestivum* L.

Dheyaa Fathi Aljuburi¹ & Moyassar Muhammad aziz²

^{1,2}Department of Field Crops - College of Agriculture and Forestry - University of Mosul - Mosul - Iraq.

Dheyaa Fathi Aljuburi: dfhrdheyaa@uomosul.edu.iq

ARTICLE INFO

Received: October 1, 2024 Accepted: November 1, 2024

Volume: 4 Issue:3

ABSTRACT

Bread-Wheat (*Triticum aestivum* L.) ranks among the world's most essential food crops, particularly within the grain category. Its yield potential can be significantly enhanced through the use of high-yield cultivars, alongside optimal fertilizer application, irrigation, and herbicide usage. Accordingly, a field experiment was carried out during the 2021-2022 growing season at two locations in Nineveh Governorate: Bartella and Tilkaif. These semi-arid regions depend on supplementary irrigation. The experiment focused on two main factors: chemical herbicides (Control, Atlants, Pallas, Reward, Spotlight, Spotlight+Clodia, and Spotlight+Reward) and wheat cultivars (Wafia and Tal Afar3).

The experiment conducted using a strip-block design within a randomized Complete Block Design (RCBD) with three replications. Data analyzed using the Least Significant Difference (lsd) test for comparing means. The results showed that the combined herbicide treatment of Spotlight+Reward significantly improved plant height, number of spikes/m2, weight of 1000 grains (g), and grain yield (g/m²), with values of 80.453 and 85.8 cm, 333.6 and 321.667 spikes/m², 35.024 and 34.517 g, and 312.93 and 214.214 g/m² at Tilkaif and Bartella, respectively. The Wafia cultivar achieved the peak value yield in terms of spikes number at square meter and grain yield (g/m²), with values of 319.543 and 308.155 spikes/m² and 234.946 and 214.214 g/m² at Tilkaif and Bartella, respectively.

Based on the aforementioned findings, we conclude that the combination of herbicides (Spotlight + Reward) beside "Wafia" cultivar played a significant role in suppressing weed growth, in addition to causing a substantial increase in yield traits and its components.

KEYWORDS

Bread-Wheat, Herbicide, Cultivars, Weeds, Pallas, Spotlight.

1. Introduction

Wheat (*Triticum aestivum* L.) is a globally abundant food crop, belonging to *Poaceae* family. Yield improvements can be up to 11 times greater with high-yield cultivars, optimal fertilizer use, irrigation, and herbicides (Wahab & Aljuburi, 2023).

As the global population grows, the Food and Agriculture Organization (FAO) estimates the world population will hit nine billion by 2050. This increase will require doubling crop production to meet future food demands (FAO, 2020). Global statistics report that grain production worldwide in the 2023/2024 season reached about 784.91 million metric tons (ASGIS, 2024).

Though Iraq is among the original regions where wheat originated and has suitable conditions for its cultivation, its production rate is still low compared to global figures. Statistics show that the total area planted with wheat in the winter season of 2023 was 8,420,000 dunams, a 12.5% increase from the 2022 season, which had 7,487,000 dunams. In 2023, Iraq produced 4,248,000 tons of wheat, a 53.6% increase from 2022, when 2,750,000 tons were harvested. The average yield per dunam in the winter of 2023 was estimated at 504.5 kg, a 36.6% increase from 2022's 369.3 kg (ASGIS, 2023).

Weeds significantly impact agricultural production by reducing crop yield worldwide (Anthimidou *et al.*, 2020). They lower crop quality and quantity and pose health risks to humans and animals by competing for light, nutrients, soil moisture, and space. One reason for Iraq's low wheat production is the lack of scientific methods in wheat cultivation and management, especially weed control. This results in yield losses of 30-50%, as weeds are a limiting factor for wheat growth and productivity (Halawa, 2019). Increased weed density in a unit area leads to reduced crop yield due to decreased plant biological efficiency (Galon *et al.*, 2019).

Herbicides are highly effective tools for weed control and reducing crop yield losses (Heap, 2019). Chemical control is preferred over traditional methods due to ease of use, low cost, and rapid effectiveness in eliminating weeds and reducing their impact on crop growth and yield (Matzrafi *et al.*, 2017). Nevertheless, repeatedly using the same herbicide at incorrect concentrations may result in weed resistance. Effective control and prevention of weed resistance can be achieved through herbicide mixtures, which require lower concentrations, have a broad spectrum, and increase effectiveness on target weeds without harming the crop (Patel *et al.*, 2017).

Weeds are not the only factor affecting crop yield; other factors include nutrients and crop cultivars. Choosing the most suitable cultivar for the prevailing environmental conditions, which has high weed competitiveness, helps increase production per unit area. Newly introduced wheat genetic cultivars have shown good performance under irrigated conditions in Iraq, as demonstrated through trials comparing their performance with approved cultivars, encouraging their adoption for cultivation in these areas (Mansoor, 2021).

2. Materials and Methods

A field-experiment conducted during the growing season (2021-2022), at locations "Bartella" and "Talkaif" within Nineveh Governorate, both of them within semi-arid regions relying on supplementary irrigation. The experiment included two factors: the first being chemical herbicides (1- Control, 2- Atlants, 3- Pallas, 4- Reward, 5- Spotlight, 6- Spotlight+Clodia, 7- Spotlight+Reward) and the second being wheat cultivars (Wafia and Tal-Afar3).

2.1. Agricultural Operations

The felid was prepared by plowing twice orthogonally using a moldboard plow, and the soil was then refined using disk harrows. Sowing was performed using a seed drill on November 26th, 2022. The fertilizer (diammonium phosphate, "DAP") added in a single dose at sowing stage with a rate (200 kg/ha), following the recommendations of Iraqi Ministry of Agriculture. Nitrogen fertilizer (urea, containing 46% N) was divided in two amounts (120 kg/ha at tillering stage and 120 kg/ha at elongation stage).

2.2. Experimental Design

The experiment was implemented following a strip-block design within a randomized complete block design (RCBD) with three replications. Each replication contained 14 experimental units, totaling 42 experimental units. columns included the chemical herbicides, while rows included the wheat cultivars. Analysis was performed using (lsd) test to compare means, utilizing GenStat V12 software.

Table (1) Herbicide information.

Commercial Name	Active substance	Chemical Group	Recommendation Rate	Target Weeds
Reward-Max EC	Clodinflop-propagyl 24% w/v. Cloquintocet-Mexyl 6%. w/v	Aryloxyphenoxy- propionates	600 ml/ha.	Narrow-leaved weeds
Spotlight 75% DWG	Tribenuron-methyl 75%	Sullfonylurea	80 g/ha.	Broad-leaved weeds
Atlants	Mesosulfuron Methyl 10 g/l IodosulfuronMethy sodium 2 g/l	Sullfonylurea	400 g/ha + 125 ml surface agent	Broad and Narrow
Pallas	Pyroxsulam	Triazolopyrimidine sulfonamide	500 ml/ha	leaved weeds

3. Results and Discussion

3.1. Narrow Weeds Number (weed m⁻²)

Table (2) showed effect of herbicides on number of Narrow-leaved weeds at the Tilkaif location. All herbicides used in the study significantly superiority at "control" treatment, which reached highest weeds No. at (8.333) weed/m². The treatment with Spotlight+Clodia achieved the minimum value weeds No. at 1.875 weed/m², while the Reward treatment had the highest number at 4.375 weed/m². In "Bartella", all herbicides also demonstrated superior performance the control, which achieved the peak value weeds No. at 26.833 weed/m². The "Spotlight+Reward" treatment achieved the minimum value weeds No. at 10.733 weed/m². The superiority of the "Spotlight+Clodia" treatment in both "Tilkaif" and "Bartella" is likely due to the efficiency of these herbicides when mixed, reducing weed density per unit area. This result may be due to herbicides that contained a more than one chemical substance in their composition are highly effective in reducing weed growth and numbers (Tiwari *et al.* 2015).

The cultivar effects showed that Wafia achieved the minimum value weeds No. at 3.81 weed/m⁻², not significantly different from "TalAfar3" at the "Tilkaif" location. In "Bartella", Wafia demonstrated superior performance, recording the lowest weeds No. at 12.048 weed/m⁻², likely due to its efficiency in competing against and suppressing weeds. This attributed may be because of an improvement in the competition of the wheat crop, which in turn leads to a reduction in its density and variations in its growth behavior (Mefleh *et al.* 2019).

The interaction between herbicides and cultivars at the "Tilkaif" location showed that the "Spotlight+Clodia" treatment with Wafia achieved the minimum value weeds No. at 1.667 weed/m⁻². In "Bartella", the same treatment achieved the minimum value weeds No. at 4.6 weed/m⁻². This results due to the mixture of herbicides treatments had a significantly inhibit the weed's growth, and then decreasing its density and increase its efficiency in control (Raj *et al.* 2020).

Table (2) Effect of Herbicides, Cultivars and its' interaction on Narrow Weeds No. (weed m-2) for both "Telkaif" and "Bartella" Locations.

ruote (2) Effect	or merorenes,	Cultivars and its	interaction on	TalKaif	No. (weed iii)	101 00th Telku	ir und Burten	Locations.
Cultivars	Control	Atlants	Pallas	Reward	Spotlight	Spotlight +Clodia	Spotlight +Reward	Means of Cultivars
Tal Afar3	8.75	4.583	3.75	4.583	2.5	2.083	2.083	4.048
Wafia	7.917	3.75	3.333	4.167	2.917	1.667	2.917	3.81
Means of Herb.	8.333	4.167	3.542	4.375	2.708	1.875	2.5	3.929
L.S.D.	Cultivars 2.954		Herbicides 1.631		Cultivar×Herb. 2.534			
				Bartella				
Tal Afar3	33.733	18.4	16.867	16.867	30.667	18.4	13.8	21.248
Wafia	19.933	16.867	9.2	13.8	12.267	4.6	7.667	12.048
Means of Herb.	26.833	17.633	13.033	15.333	21.467	11.5	10.733	16.648
L.S.D.		ivars 599	Herb. 3.724		Cultivar×Herb. 5.45			

3.2. Broad Weeds Number (weed m⁻²)

The data presented in Table (3) show herbicides effect on broad-leaved weeds No. at the "Tilkaif" location. All herbicide treatments demonstrated superior performance the control, which achieved the peak value weeds No. at (28.333) weed/m⁻². The treatments with "Pallas" and "Spotlight+Reward" both achieved the minimum value weeds number at (6.67) weed/m⁻². In Bartella, the control treatment achieved the peak value weeds No. at (79.35) weed/m⁻², while the "Spotlight+Reward" treatment achieved the minimum value number at (18.4) weed/m⁻². the herbicides with more than one chemical in their composition may be causes a highly efficient at weeds (Tiwari *et al.* 2015).

Regarding cultivar effects at "Tilkaif", there were no notable variations between the cultivars. However, at "Bartella", the "TalAfar3" cultivar demonstrated superior performance and achieved the minimum value weeds No. at 30.886 weed/m⁻². Where the biomass accumulation in wheat varieties is closely and negatively related with weed biomass indicating the potential competitiveness of the crop against the weeds, and it has previously been shown that early crop activity is associated with rapid growth and canopy efficiency, (Mwendwa *et al.* 2020).

The interaction between herbicides and cultivars at the "Tilkaif" location showed that both "Spotlight+Reward" and "Pallas" treatments with both cultivars recorded the same lowest average of (6.667) weed/m⁻². In Bartella, the

"Spotlight+Reward" treatment with the "TalAfar3" cultivar achieved the minimum value weeds No. at (10.733) weed/m², while the "control" treatment with the "Wafia" cultivar achieved the peak value number at (94.3) weed/m². This is consistent with what was stated by (Wahab and Aljuburi 2023) that systemic herbicides, which are transmitted within the plant by xylem and phloem, lead to inhibits of physiological activities within the plant and thus stop the division of cells, and all these factors lead to plant death.

Table (3) Effect of Herbicides, Cultivars and its' i	interaction on Broad Weeds No. ((weed m ⁻²) for both "Telkaif" and "Bartella" Locations.
--	----------------------------------	--

				TalKaif				
Cultivars	Control	Atlants	Pallas	Reward	Spotlight	Spotlight +Clodia	Spotlight +Reward	Means of Cultivars
Tal Afar3	25	10	6.667	10	13.333	10	6.667	11.667
Wafia	31.667	8.333	6.667	13.333	8.333	11.667	6.667	12.381
Means of Herb.	28.333	9.167	6.667	11.667	10.833	10.833	6.667	12.024
L.S.D.		ivars 323		oicides 032		r*Herb. 334		
				Bartella				
Tal Afar3	64.4	18.4	32.2	49.067	16.867	24.533	10.733	30.886
Wafia	94.3	30.667	23	52.133	38.333	23	26.067	41.071
Means of Herb.	79.35	24.533	27.6	50.6	27.6 23.767		18.4	35.979
L.S.D.		ivars 882	Herb. 9.7			r×Herb. 943		

3.3. Narrow Weeds Weight (g. m⁻²)

The data presented in Table (4) for the "Tilkaif" location show significant differences between the herbicides used in the study. All herbicide treatments demonstrated superior performance the "control", which achieved the peak value weed weight at (9.18) g/m². The "Atlants" treatment achieved the minimum value average weed weight at (4.56) g/m². In Bartella, all herbicide treatments also demonstrated superior performance the "control", which achieved the peak value average weed weight at (42.84) g/m². The "Spotlight+Reward" treatment achieved the minimum value weed weight at (21.56) g/m². This results were consistent with what Al-Mashhadani (2020) found that the reason for this is due to the specialized herbicides in combating both narrow and broad weeds and their efficiency; Thus, this systemic herbicide, which hinders the functioning of the vital and physiological processes of the weed and then stopping its growth and elimination.

The cultivar effects showed no notable variations between the cultivars used in the study at both locations. This is consistent with what (Angel et al. 2016) reported in the varietal competitiveness study that there is no significant difference between varieties in limiting bush growth.

The interaction between herbicides and cultivars at the "Tilkaif" location showed that the "Atlants" herbicide with the "Wafia" cultivar achieved the minimum value weed weight at (4.4) g/m², while the control treatment with the same cultivar achieved the peak value weed weight at (9.84) g/m². In Bartella, the "Spotlight+Clodia" treatment with the "Wafia" cultivar achieved the minimum value average weed weight at (20.868) g/m², while the control treatment with the same cultivar achieved the peak value weed weight at (49.716) g/m². This results may be attributed to the herbicide "Atlants" included of mesosulfuron + idosulfuron, which is sufficient to inhibit amino acids and form new leaves (Mohammed *et al.* 2016).

Table (4) Effect of Herbicides, Cultivars and its' interaction on Narrow Weeds Weight (g. m-2) for both Telkaif and Bartella Locations.

				TalKaif				
Cultivars	Control	Atlants	Pallas	Reward	Spotlight	Spotlight +Clodia	Spotlight +Reward	Means of Cultivars
Tal Afar3	8.52	4.72	4.08	7.52	7.2	6.24	4.56	6.12
Wafia	9.84	4.4	5.32	7.48	7.84	6.52	4.6	6.571

Means of Herb.	9.18	4.56	4.7	7.5	7.52	6.38	4.58	6.346
L.S.D.		ivars 199		icides)12		r*Herb. 392		
			Ba	rtella locatio	n			
Tal Afar3	35.964	25.464	23.964	25.164	26.556	21.444	24.156	26.102
Wafia	49.716	22.188	23.148	21.192	23.172	20.868	22.668	26.136
Means of Herb.	42.84	23.826	23.556	23.178	24.864	21.156	23.412	26.119
LCD		ivars		erb.		r×Herb.		
L.S.D.	4.4	225	4.4	138	5.	22		

3.4. Broad Weeds Weight (g. m⁻²)

The data presented in Table (5) for the "Tilkaif" location show significant differences between the herbicides are used. All herbicides demonstrated superior performance the "control", which achieved the peak value dry weed weight at (60.64) g/m². The "Spotlight+Reward" treatment achieved the minimum value weed weight at (30.88) g/m². In Bartella, all herbicides also demonstrated superior performance the "control", which achieved the peak value weed weight at (88.196) g/m², while the "Spotlight+Reward" treatment achieved the minimum value weed weight at (24.702) g/m². This result may be because herbicides contained more than one chemical substance in their composition are very efficient in inhibiting weed growth (Aljuburi and Anter 2021).

The cultivars effects in "Tilkaif" location showed that the "Wafia" cultivar demonstrated superior performance, recording the lowest weed weight at (32.395) g/m². In Bartella, there were no notable variations between the cultivars. The reason for the superiority of the variety "Wafia" and rapidly growth of as well as its canopy, and this is consistent with what stated by (Arshad *et al.* 2021) that the growth rapidly is the achievement of closed canopy, which is the general mechanism for improving the competition of grain crops for different weed species.

The interaction between herbicides and cultivars showed that "Spotlight+Reward" treatment with the "Wafia" cultivar achieved the minimum value weed weight at (26.56) g/m² and (22.98) g/m² at "Tilkaif" and "Bartella" locations respectively. The "control" treatment with the "TalAfar3" cultivar achieved the peak value weed weight at (79.792) g/m² in "Tilkaif" location, while "control" with the "Wafia" cultivar achieved the peak value average weed weight at (94.899) g/m² in Bartella location.

Table (5) Effect of Herbicides, Cultivars and its' interaction on Broad Weeds Weight (g. m-2) for both Telkaif and Bartella Locations.

	•	•		TalKaif	•	•		•
Cultivars	Control	Atlants	Pallas	Reward	Spotlight	Spotlight +Clodia	Spotlight +Reward	Means of Cultivars
Tal Afar3	79.792	40.688	47.76	57.088	39.056	41.568	35.2	48.736
Wafia	41.488	34.624	31.392	31.36	32.336	29.008	26.56	32.395
Means of Herb.	60.64	37.656	39.576	44.224	35.696	35.288	30.88	40.566
LCD	Cultivars		Herbicides		Cultiva	r*Herb.		
L.S.D.	6.585		6.989		9.471			
				Bartella				
Tal Afar3	81.492	35.1	24	54.9	23.244	29.712	26.424	39.267
Wafia	94.899	25.2	30.096	51.36	36.276	26.328	22.98	41.02
Means of Herb.	88.196	30.15	27.048	53.13	29.76	28.02	24.702	40.144
L.S.D.	Culti 5.5			erb. 051	Cultivar×Herb. 9.325			

3.5. Plant Height (cm)

The results presented in Table (6) show significant differences in plant height due to the herbicides used in the experiment at the Tilkaif location. The Pallas treatment achieved the peak value of plant height at (85.143) cm. In

Bartella, the "Spotlight+Reward" treatment achieved the peak value average plant height at (85.8) cm, while the control treatments achieved the minimum value averages of (62.533) cm and (61.533) cm at Tilkaif and Bartella, respectively. The superior performance of these herbicides is likely due to their efficiency in reducing weed growth and dry weight, providing better growth conditions for the crop plants. The reason may be due to the efficiency of these herbicides in limiting the weeds growth and inhibiting their dry weights and gave a better opportunity for crop plants to grow then increasing in plant height. (Singh *et al.* 2019).

Cultivar effects at Tilkaif showed no notable variations between the cultivars. However, in Bartella, the Wafia cultivar demonstrated superior performance TalAfar3, recording the highest of plant height (77.1) cm.

The interaction between herbicides and cultivars at "Tilkaif" location showed that "Pallas" herbicide with "TalAfar3" achieved the peak value of plant height at (88.853) cm. In Bartella, the "Spotlight+Reward" treatment with "Wafia" achieved the peak value of plant height (89.4) cm, while the "control" treatment with "TalAfar3" achieved the minimum value (62.16) cm and (60.3) cm at "Tilkaif" and "Bartella" locations respectively. Some traits of mixing herbicides molecules have been developed that have very effective at lower doses of broad, and Narrow weed and may be more effective in controlling different weeds (Kumar *et al.* 2020).

Table (6) Effect of Herbicides, Cultivars and its' interaction on plant height (cm) for both Telkaif and Bartella Locations.

				TalKaif				
Cultivars	Control	Atlants	Pallas	Reward	Spotlight	Spotlight +Clodia	Spotlight +Reward	Means of Cultivars
Tal Afar3	62.16	78.96	88.853	67.013	65.147	77.84	80.36	74.333
Wafia	62.907	75.88	81.433	63.933	63.467	81.9	80.547	72.867
Means of	62.533	77.42	85.143	65.473	64.307	79.87	80.453	73.6
Herb.								
L.S.D.		ivars .01		oicides .43	Cultivar*Herb. 13.60			
				Bartella				
Tal Afar3	60.3	79.1	76.8	68.6	63.6	82.05	82.2	73.236
Wafia	63.55	80.8	85.6	68.85	64.7	86.8	89.4	77.1
Means of								
Herb.	61.925	79.95	81.2	68.725	64.15	84.425	85.8	75.168
	Cult	ivars		erb.	Cultiva	r×Herb.		
L.S.D.	2.1	109	6.	664	8.0)62		

3.6. Number of Spikes (spikes m⁻²)

The results presented in Table (7) show significant differences in the number of spikes due to the herbicides used. The "Spotlight+Reward" treatment achieved the peak value of spikes number (333.6 and 321.667) spikes/m2 at "Tilkaif" and "Bartella" locations respectively, while "control" treatments achieved the minimum value (323.8 and 229.167) spikes/m2 at "Tilkaif" and "Bartella" locations respectively. This is consistent with what was stated by (Al-Mitrafi *et al.* 2014) that the use of (diclofop-methyl + tribneuron-methyl) herbicides gave an opportunity for better growth for wheat plants and the formation of a larger tillers number and thus an increase in the number of spikes per unit area.

Cultivar effects showed significant differences between the cultivars. The "Wafia" cultivar demonstrated superior performance "TalAfar3", recording the highest value (319.543 and 308.155) spikes/m2 at "Tilkaif" and "Bartella" locations respectively. The efficiency of "Wafia" to formation a larger number of effective tillers may be a reason of gave a larger number of spikes per unit area in addition to its efficiency in competing with weeds plants.

The interaction between herbicides and cultivars at "Tilkaif" showed that the "Spotlight+Reward" treatment with "Wafia" achieved the peak value of spikes number at (380.8) spikes/m2. In Bartella, the "Pallas" herbicide with "Wafia" achieved the peak value of number of spikes at (348.75) spikes/m2, while the "control" treatment with "TalAfar3" achieved the minimum value (225.6 and 200) spikes/m2 at "Tilkaif" and "Bartella" locations respectively.

Table (7) Effect of Herbicides, Cultivars and its' interaction on Spikes No. (spikes m-2) for both Telkaif and Bartella Locations.

Cultivars	Control	Atlants	Pallas	Reward	Spotlight	Spotlight +Clodia	Spotlight +Reward	Means of Cultivars
Tal Afar3	225.6	260.8	270.4	251.2	272	264	286.4	261.486
Wafia	240	283.2	336	281.6	340.8	374.4	380.8	319.543
Means of Herb.	232.8	272	303.2	266.4	306.4	319.2	333.6	290.514
L.S.D.		ultivars Herbicides Cultivar*Herb. 12.64 23.73 27.86						
				Bartella				_
Tal Afar3	200	256.667	286.667	221.67	285	280	308.333	262.619
Wafia	258.333	328.333	348.75	275	310	301.667	335	308.155
Means of								
Herb.	229.167	292.5	317.708	248.33	297.5	290.833	321.667	285.387
	Cult	ivars	Не	rb.	Cultiva	r×Herb.		
L.S.D.	8.	43	24	.62	34	.26		

3.7. Weight of 1000 Grains (g)

The data presented in Table (8) show significantly differences in the 1000 grains weight due to the herbicides used in this study. At "Tilkaif", the "Spotlight+Reward" treatment achieved the peak value average weight of 1000 grains at (35.024) g. In Bartella, "Pallas" herbicide achieved the peak value of weight of 1000 grains at (36.719) g, while the "control" treatments achieved the minimum value (26.414) g and (26.873) g at "Tilkaif" and "Bartella" locations respectively. The reason for this may be attributed to the decrease in weed number and its weight while using the (Spotlight + Reward) treatment, and this was reflected on the efficiency of photosynthesis processes and then increasing in processed dry matter that may transferred to the grains and leads to an increase in the weight of 1000 grains (ALJUBURI and ANTER 2021).

Cultivar effects for the weight of 1000 grains showed that at "Tilkaif" location, the "Wafia" cultivar demonstrated superior performance "TalAfar3", recording the highest value of weight at (32.09) g. In Bartella, there were no notable variations between "TalAfar3" and "Wafia".

The interaction between herbicides and cultivars at "Tilkaif" location showed that the "Spotlight+Reward" treatment with "Wafia" achieved the peak value of weight of 1000 grains at (36.692) g, while the "control" treatment with "TalAfar3" achieved the minimum value of weight at (25.252) g. In Bartella, the "Spotlight+Reward" treatment with "TalAfar3" achieved the peak value average weight at 37.904 g, while the control treatment with Wafia achieved the minimum value average weight at 26.368 g.

Table (8) Effect of Herbicides, Cultivars and its' interaction on 1000 grains weight for both Telkaif and Bartella Locations,

				TalKaif				
Cultivars	Control	Atlants	Pallas	Reward	Spotlight	Spotlight +Clodia	Spotlight +Reward	Means of Cultivars
Tal Afar3	25.252	26.732	35.792	27.728	31.548	30.38	33.356	30.113
Wafia	27.576	29.732	33.896	31.964	31.156	33.612	36.692	32.09
Means of	26.414	28.232	34.844	29.846	31.352	31.996	35.024	31.101
Herb.								
L.S.D.	Cultivars 1.873		Herbicides 5.092		Cultivar*Herb. 7.622			
				Bartella				
Tal Afar3	27.108	31.658	35.654	36.108	28.713	33.038	37.904	32.883
Wafia	26.638	34.233	37.783	31.717	31.879	36.592	34.517	33.337
Means of								
Herb.	26.873	32.946	36.719	33.913	30.296	34.815	36.21	33.11
L.S.D.		ivars 749		erb. 107		r×Herb. 411		

3.8. Grain Yield (g m⁻²)

The table (9) presented significant differences in grain yield due to the herbicides used in the study. The "Spotlight+Reward" treatment achieved the peak value grain yield at (312.693) g/m² and (234.657) g/m² at "Tilkaif" and "Bartella" locations respectively, while the control treatments achieved the minimum value averages at (127.318, and 100.12) g/m² at "Tilkaif" and "Bartella" locations respectively. The reason may be due to attributed to efficiency of these herbicides in combating the weed and reducing its growth and thus providing moisture, nutrients and light, which led to increasing the efficiency of the photosynthesis process and increasing its productions, which contribute significantly to increasing in leaves area and thus increasing the accumulation of dry matter, then increasing the spikes number and weight grains and thus increasing the yield, and this is confirmed by (Soliman and Hamza, 2015).

Cultivar effects for grain yield at "Tilkaif" showed no notable variations between the cultivars. However, "Wafia" cultivar demonstrated superior performance "TalAfar3", recording the highest grain yield at (234.946, and 214.214) g/m² at "Tilkaif" and "Bartella" locations respectively.

The interaction between herbicides and cultivars at Tilkaif showed that the "Spotlight+Reward" treatment with "Wafia" achieved the peak value of grain yield (382.282) g/m². In Bartella, "Pallas" herbicide with "Wafia" cultivar achieved the peak value of grain yield (324.359) g/m², while "control" treatment with "TalAfar3" achieved the minimum value (115.601) g/m² and (84.222) g/m² at "Tilkaif" and "Bartella" locations respectively. The excellence and efficiency of these herbicides in the weed control may be a reason of this significant as well as the mixing agents containing chemicals that are more effective in weed control (Evans et al. 2016; Lamichhane et al. 2016).

Table (8) Effect of Herbicides, Cultivars and its' interaction on Grain Yield (g m⁻²) for both Telkaif and Bartella Locations.

			TalKaif				
Control	Atlants	Pallas	Reward	Spotlight	Spotlight +Clodia	Spotlight +Reward	Means of Cultivars
115.601	180.095	258.16	160.521	199.798	173.283	243.105	190.08
139.034	175.454	261.97	209.612	211.614	264.653	382.282	234.946
127.318	177.775	260.065	185.066	205.706	218.968	312.693	212.513
Cultivars Herbicides Cultivar*Herb.							
			Bartella				
84.222	132.319	186.889	138.33	132.425	163.246	200.863	148.327
116.019	189.868	324.359	160.08	216.511	224.209	268.451	214.214
100.12	161.093	255.624	149.21	174.468	193.727	234.657	181.271
Cult	ivone	Цο	rh	Cultiva	· Y Horb		
	Control 115.601 139.034 127.318 Cult 14 84.222 116.019	Control Atlants 115.601 180.095 139.034 175.454 127.318 177.775 Cultivars 14.18 84.222 132.319 116.019 189.868	Control Atlants Pallas 115.601 180.095 258.16 139.034 175.454 261.97 127.318 177.775 260.065 Cultivars Herbital 14.18 47. 84.222 132.319 186.889 116.019 189.868 324.359 100.12 161.093 255.624	Control Atlants Pallas Reward 115.601 180.095 258.16 160.521 139.034 175.454 261.97 209.612 127.318 177.775 260.065 185.066 Cultivars Herbicides 14.18 47.78 Bartella 84.222 132.319 186.889 138.33 116.019 189.868 324.359 160.08 100.12 161.093 255.624 149.21	TalKaif Control Atlants Pallas Reward Spotlight 115.601 180.095 258.16 160.521 199.798 139.034 175.454 261.97 209.612 211.614 127.318 177.775 260.065 185.066 205.706 Cultivars Herbicides Cultiva 14.18 47.78 63 Bartella 84.222 132.319 186.889 138.33 132.425 116.019 189.868 324.359 160.08 216.511 100.12 161.093 255.624 149.21 174.468	TalKaif Control Atlants Pallas Reward Spotlight +Clodia 115.601 180.095 258.16 160.521 199.798 173.283 139.034 175.454 261.97 209.612 211.614 264.653 127.318 177.775 260.065 185.066 205.706 218.968 Cultivars Herbicides Cultivar*Herb. 14.18 47.78 63.59 Bartella 84.222 132.319 186.889 138.33 132.425 163.246 116.019 189.868 324.359 160.08 216.511 224.209 100.12 161.093 255.624 149.21 174.468 193.727	Control Atlants Pallas Reward Spotlight +Clodia Spotlight +Reward 115.601 180.095 258.16 160.521 199.798 173.283 243.105 139.034 175.454 261.97 209.612 211.614 264.653 382.282 127.318 177.775 260.065 185.066 205.706 218.968 312.693 Cultivars Herbicides Cultivar*Herb. 14.18 47.78 63.59 Bartella 84.222 132.319 186.889 138.33 132.425 163.246 200.863 116.019 189.868 324.359 160.08 216.511 224.209 268.451 100.12 161.093 255.624 149.21 174.468 193.727 234.657

4. Conclusions

The herbicide treatments varied in their efficacy in suppressing weed densities and their dry weights, in addition to affecting yield traits and components compared to the control at both study locations. The combined treatment of Spotlight + Reward had the most significant impact on most studied traits. This effect is likely because the combination of herbicides broke the resistance of weeds to the treatments. Additionally, the Wafia cultivar outperformed the Tal Afar3 cultivar in most of the studied traits.

REFERENCE:

- [1] Aljuburi, D. F., & Anter, S. H. (2021).. Effect of tillage system and chemical herbicides on growth and yield of wheat (*Triticum astivium* L.) for associated weed in dry land. Plant Cell Biotechnology and Molecular Biology, 65-73.
- [2] Al-Mashhadany, A. M. A. (2020).. Effect of tillage system, seed rate and herbicides on growth, yield of bread wheat under dryland farming (*Triticum astivium* L.). M.Sc. Thesis, College of Agriculture and Forestry, University of Mosul.
- [3] Al-Mutrifi, H. I. T., Helmoud, N. R., & Al-Fartousi, H. A. K. (2014).. Individual and combined effect of different herbicides in weed control, growth and yield of wheat. Karbala University Journal, 12(1), Scientific.

- [4] Angel, K., Hunt, J. R., & Poole, N. (2016).. Early sowing of wheat. In 2015 BCG Season Research Results (pp. 23-29). Birchip Cropping Group: Birchip, Vic.
- [5] Anthimidou, E., Ntoanidou, S., Madesis, P., & Eleftherohorinos, I. (2020).. Mechanisms of Lolium rigidum multiple resistance to ALS- and ACCase-inhibiting herbicides and their impact on plant fitness. Pesticide Biochemistry and Physiology, 164, 65-72.
- [6] Arshad, M. A., Ansari, N., Umar, M., Arshad, F., Adil, M., Dilbar, N., Rehmatullah, J., Javed, M. S., & Abbas, R. N. (2021).. A review on wheat management, strategies, current problems and future perspectives. Haya Saudi Journal of Life Sciences, 6(1), 14-18.
- [7] Evans, J. A., Tranel, P. J., Hager, A. G., Schutte, B., Wu, C., Chatham, L. A., & Davis, A. S. (2016).. Managing the evolution of herbicide resistance. Pest Management Science, 72(1), 74-80.
- [8] Galon, L., Basso, F. G. M., Chechi, L., Pilla, T. P., Santin, C. O., Bagnara, M. A. M., Franceschetti, M. B., Castoldi, C. T., Perin, G. F., & Forte, C. T. (2019).. Weed interference period and economic threshold level of ryegrass in wheat. Bragantia, Campinas, 78(3), 409-422.
- [9] Halawa, A. M. A. (2019).. Effect of sowing and nitrogen application methods on yield and yield components of some wheat varieties. Annals of Agricultural Science, Moshtohor, 57(1), 21-30.
- [10] Heap, I. (2019).. International survey of herbicide resistant weeds. Retrieved from http://www.weedscience.org .(10.24.2019)
- [11] Kaloumenos, N., Adamouli, V. N., Dordas, C. A., & Eleftherohorinos, I. G. (2011).. Corn poppy (*Papaver rhoeas*) cross-resistance to ALS inhibiting herbicides. Pest Management Science, 67(5), 574-585.
- [12] Kumar, A., Singh, R. S., Singh, M. P., & Kumar, P. (2020).. Effect of various herbicides to control of weeds in wheat and associated weeds.
- [13] Lamichhane, J. R., Devos, Y., Beckie, H. J., Owen, M. D., Tillie, P., Messéan, A., & Kudsk, P. (2017).. Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad. Critical Reviews in Biotechnology, 37(4), 459-475.
- [14] Mansoor, M. L., Al-Issawi, M. H., & Mahmood, J. N. (2021, May).. Genotypes estimation of DREB gene expression in wheat (*Triticum aestivum* L.) introduced to Anbar Governorate under water stress. In IOP Conference Series: Earth and Environmental Science (Vol. 761, No. 1, p. 012072). IOP Publishing.
- [15] Matzrafi, M., Gerson, O., Rubin, B., & Peleg, Z. (2017).. Different mutations endowing resistance to acetyl-CoA carboxylase inhibitors result in changes in ecological fitness of *Lolium rigidum* populations. Frontiers in Plant Science, 8, 1078.
- [16] Mefleh, M., Conte, P., Fadda, C., Giunta, F., Piga, A., Hassoun, G., & Motzo, R. (2019).. From ancient to old and modern durum wheat varieties: Interaction among cultivar traits, management, and technological quality. Journal of the Science of Food and Agriculture, 99(5), 2059-2067.
- [17] Mohammed, A. T., Shati, R. K., & Ali, A. J. (2016).. Evaluate the effectiveness of the weed herbicide Atlantis WG for some varieties of wheat which are approved in Iraq and associated weed and its impact on the economic quotient. Anbar Journal of Agricultural Sciences, 14(1), 183-194.
- [18] Mwendwa, J. M., Brown, W. B., Weidenhamer, J. D., Weston, P. A., Quinn, J. C., Wu, H., & Weston, L. A. (2020).. Evaluation of commercial wheat cultivars for canopy architecture, early vigour, weed suppression, and yield. Agronomy, 10(7), 983.
- [19] Patel, B. D., Chaudhari, D. D., Patel, V. J., Patel, H. K., Mishra, A., & Parmar, D. J. (2017).. Influence of broad-spectrum herbicides on yield and complex weed flora of wheat (*Triticum aestivum* L.). Research on Crops, 18(3), 433-437.
- [20] Raj, R., Kumar, A., & Raj, P. (2020).. Evaluation of different weed management practices on nutrient uptake, yield and soil microbial population of wheat (*Triticum aestivum* L.). Journal of Pharmacognosy and Phytochemistry, 9(5), 2777-2780.
- [21] Singh, B., Kumar, M., & Dhaka, A. K. (2019).. Comparative efficacy of tank mixture of post emergence herbicides for the control of mixed weed flora in wheat. Journal of Pharmacognosy and Phytochemistry, 8(2), 384-389.
- [22] Soliman, I. E., & Hamza, A. M. (2015).. Efficacy of some herbicides on wheat crop and associated weeds and detecting its residues in wheat plant and soil. Journal of Plant Production, 6(10), 1631-1647.
- [23] Statista. (2024).. Report on the future of consumption. Retrieved from https://www.statista.com/markets/
- [24] Tiwari, A., Verma, B. K., Dev, J., & Kumar, R. (2015).. Bioefficacy of clodinafop-propargyl+ metsulfuron-methyl against complex weed flora in wheat. Indian Journal of Weed Science, 47(4), 422-424.
- [25] Wahab, S. E. A., & Aljuburi, D. F. (2023). Evaluation of efficiency different concentrations of Surage herbicides on the growth and yield of two varieties of wheat (*Triticum aestivum* L.) and associated weeds. In IOP Conference Series: Earth and Environmental Science (Vol. 1213, No. 1, p. 012037). IOP Publishing.